BUILDING RESEARCH INSTITUTE TESTING LABORATORIES GROUP

Page 1 of 23

DEPARTMENT OF BUILDING STRUCTURES AND COMPONENTS LABORATORY OF BUILDING STRUCTURES AND COMPONENTS LK

TEST REPORT No. LK00-01111/14/Z00NK

Customer: TRIMAL Polska Sp. z o.o.

Customer address: ul. Konduktorska 42, 40-155 Katowice

Test Object Information

Test object: Armastek composite bars for concrete reinforcement

Date of acceptance of test object: 06.10.2014

No. of test object acceptance report: LK00-01111/14/Z00NK

Test object acceptance procedure: Procedures of Administration of Testing laboratories group No. 18

Testing Information

Testing start date: 28.01.2015

Testing end date: 08.05.2015

Testing performed by:

dr eng. Przemysław Więch mgr eng Jacek Głodkiewicz

Laboratory of Building Structures and Components LK Warszawa | ul. Filtrowa 1 | tel. (0-22) 57-96-165; 825-80-28 | fax (0-22) 57-96-189 | |

Building Research Institute

00-611 Warsaw | ul. Filtrowa 1 | tel. 22 825 04 71 | fax 22 825 52 86 | Director tel. 22 825 28 85 | 22 825 13 03 | fax 22 825 77 30 | 02-656 Warsaw | ul. Ksawerów 211 tel. 22 843 14 71 | fax 22 843 29 31 | KRS: 0000158785 | Regon: 000063650 | NIP: 525 000 93 58 | PKO S.A. O/Warszawa | ul. Nowogrodzka 11 | 00-513 Warsaw |Account No. 77124059181111000049134568 | www.itb.pl | instytut@itb.pl

1. TEST METHOD / PROCEDURE:

- a) Ultimate tensile strength and elasticity modulus, as described in 3.1.
- b) Ultimate bending strength, as described in 3.2.
- c) Ultimate shear strength, as described in 3.3.
- d) Ultimate compression strength along the fibers, as described in 3.4.
- e) Cross-section area and geometry of ribs, as described in 3.5.
- f) Chemical resistance to alkali, as described in 3.6.
- g) Creep, as described in 3.7.
- h) Adhesion to concrete, as described in 3.8.

2. ELEMENTS FOR TESTING

Elements to be tested are bars for concrete reinforcement, made of composite material – glass fiber reinforced plastic (GFRP). Over the entire surface of the bars there is a braid made of fiberglass thread impregnated with epoxy resin, aimed at increasing of adhesion to concrete; thus the braid plays a role similar to that of the framework of steel reinforcing bars.

As for the samples intended for testing of tensile strength and adhesion to concrete, the manufacturer equipped them with fittings, located at the ends of the bars and made of pieces of steel pipes; the bars are set into these fittings on epoxy resin. These fittings are designed to secure the samples in the jaws of the testing machine.

As for the samples intended for creep test and test of chemical resistance to alkali, the fittings are made at Building Research Institute using S355 26.9x3.2 mm pipes, Epidian 62 epoxy resin, and curing agent Z-1.

3. DESCRIPTION OF TESTING METHOD

3.1 Ultimate tensile strength and elasticity modulus

Testing should be carried out in the same way as for metal samples according to PN-EN ISO 6892-1, using the samples of free length between the holders of at least 25 sample diameters. The sample should be secured in the testing machine in such a way as to prevent its crushing or falling down from the holder. Secant modulus $E_{T,i}$ for deformations caused by 0.2 and 0.5 destructive force should be taken as modulus of elongation. Ultimate tensile strength $R_{T,i}$ is the greatest force $F_{T,i}$ registered during the tests taken relative to nominal cross-sectional area of the sample.

3.2 Ultimate bending strength

Testing should be carried out in a Class l testing machine, on a freely supported sample loaded by a unit force in the center of the span. The distance between supports during testing should be equal to 10 nominal radiuses of the sample. The diameter of rod should be equal to nominal diameter of the sample to be tested. As the result of testing the maximum value of normal stresses in the sample should be indicated, which is determined from the formula as follows:

$$R_{B,i} = 8 \cdot F_m \cdot L / (\pi \cdot d_s^3)$$

(1)

where

 F_m is the maximum force obtained during testing L is the distance between supports d_s is the nominal diameter of the tested bar.

3.3 Ultimate shear strength

Testing should be carried out according to the diagram shown on Figure 1.

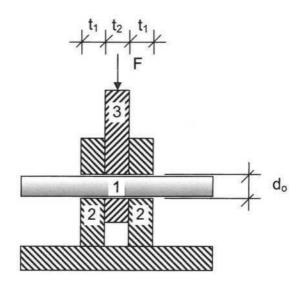


Fig. 1 - Diagram of shear strength testing

Sample "1" passes through the holes formed in sheets "2" of the base and movable blade "3". Thickness values t_1 and t_2 should be no less than diameter of hole in the sheet d_0 . Diameter of hole d_0 should provide as tight fitting of the sample as possible.

Testing should be carried out in a Class 1 testing machine. Load should be applied at a rate of 5 ± 15 mm/min until the failure of the sample.

Ultimate shear strength $R_{S,i}$ is half the maximum force obtained during testing taken relative to nominal area of the sample.

3.4 Ultimate compression strength along the fibers

Testing of compression strength should be carried out in a Class I testing machine, using samples of free length equal to 3 nominal radiuses of the bar to be tested. During testing the sample should be secured in the machine, so that its ends are protected from cleavage. Ultimate compression strength $R_{C,i}$ is the greatest force registered during the tests taken relative to nominal cross-sectional area of the sample.

3.5 Cross-section area and geometry of ribs

Cross-section area should be determined using the method stated for ribbed bars in PN-EN ISO 15630-1. For calculation purposes material density should be taken equal to 2150 kg/m³. Determination of ribs geometry involves measurement of inner diameter of the bar, outer diameter of the bar with a braid, and braiding pitch. Measurement of outer and inner diameters should be performed in two directions perpendicular to each other in at least 3 measuring points for each sample. Measurement of braiding pitch should be performed at a portion of at least ten times of its size. Instruments that provide measurement resolution of at least 0.01 mm and standard single measurement inaccuracy of no more than 0.07 mm should be used to conduct measurements.

3.6 Chemical resistance to alkali

Testing of chemical resistance to alkali comprises exposing of samples in a solution of 8 g of NaOH + 22.4 g KOH per 1000 ml of water at the temperature of 60 °C for 1,000 hours. After conditioning tensile strength of samples $R_{T,a,1000}$ is determined in accordance with paragraph 3.1, and then, based on the average tensile strength of samples before conditioning $R_{T,i,av}$, coefficient $C_{a,1000}$ is determined from the formula as follows:

$$C_{a,1000} = (1 - R_{T,a,1000} / R_{T,i,av}) \cdot 100\%$$
⁽²⁾

A shorter term of conditioning is allowed, but it should not be shorter than 336 hours (14 days). In this case an extrapolation of results obtained should be made using the relationship as follows:

$$C_{a,1000} = (1 - 10^{3 \cdot \log(R_{T,a,t}/R_{T,i,av})/\log(t)}) \cdot 100\%$$
(3)

where: *t* - time of sample conditioning in hours $R_{T,t,a}$ - tensile strength of sample after *t* hours

3.7 Creep

Testing should be carried out using equipment and conditions that meet the requirements for isothermal relaxation testing according to PN-EN-ISO 15630-3. Testing should be carried out for at least 5 samples at initial load F_i , equal to $C_c + 2\%$, $C_c + 1\%$, C_c , $C_c - 1\%$, $C_c - 2\%$ of the average tensile strength $F_{T,i,av}$ determined in accordance with paragraph 3.1. C_c is the value of reduction of maximum load caused by creep after 1000 hours, specified by manufacturer. The load should be applied in the same way as to isothermal relaxation testing according to PN-EN-ISO 15630-3. During the testing the force should be kept constant with an accuracy of at least \pm 0.5%, and registration of deformations should be performed after at least the following intervals from the end of the load application: 5 min; 30 min; 1 hour; 2 hours; 24 hours; 48 hours; 120 hours; 240 hours; and after 240 hours - at least once a week.

The measuring bench should be equipped in such a way as to allow to determine the time of the sample failure with an accuracy of at least 1 minute.

Recalculation of failure time t of the sample loaded with initial force F_i to reduce the load limit after 1000 hours should be performed using the relationship as follows:

 $C_{c,1000} = (1 - 10^{3 \cdot \log(F_i / F_{T,i,av}) / \log(t)}) \cdot 100\%$ (4)

3.8 Adhesion to concrete

Testing of adhesion to concrete should be carried out using the method given in Annex D to PN-EN 10080. During the testing it is required to determine force values for at least three values of sliding equal to 0.01 mm; 0.1 mm and 1.0 mm, and the maximum force that accompanies the loss of adhesion. The test result is the average stress value T_m for values of sliding of 0.01 mm; 0.1 mm and 1.0 mm, as well as loss of adhesion stress value T_r . The free end of the bar should be secured in the testing machine in such a way as to prevent its crushing or falling down from the holder.

4. TESTS RESULTS

4.1 Ultimate tensile strength and elasticity modulus

No.	Sample ID	Nominal	Cross-section	Ultimate modulus		Notes
		diameter	area	of elongation	strength	
			So	E _{T,i}	R _{T,i}	
		mm	mm ²	GPa	MPa	
1	LK1111 / 14/8/1	8.0	50.3	52.6	1454	
2	LK1111/14/8/2	8.0	50.3	51.3	1375	
3	LK1111/14/8/3	8.0	50.3	51.6	1536	
4	LK1111/14/8/4	8.0	50.3	51.9	1339	
5	LK1111/14/8/5	8.0	50.3	50.7	1512	
6	LK1111/14/8/6	8.0	50.3	51.2	1494	
7	LK1111/14/8/7	8.0	50.3	54.5	1399	
8	LK1111/14/8/8	8.0	50.3	54.8	1494	
9	LK1111/14/8/9	8.0	50.3	52.7	1538	
10	LK1111/14/8/10	8.0	50.3	52.7	1540	
Ave	rage values		·	52.4	1468	
Stan	dard deviation			1.4	73	
Vari	ation coefficient v	%.		2.6	5.0	
Exte	ended inaccuracy o	f a single me	easurement at a	± 1.4	± 18	1
	idence level of app	0				

Table 2

No.	Sample ID	Nominal diameter	Cross-section area	Ultimate modulus of elongation	Ultimate tensile strength	Notes
				8		
			So	E _{T,i}	R _{T,i}	
		mm	mm ²	GPa	MPa	
1	LK1111/14/12/1	12.0	113	49.9	1300	
2	LK1111/14/12/2	12.0	113	48.9	1332	
3	LK1111/14/12/3	12.0	113	50.9	1144	
4	LK1111/14/12/4	12.0	113	49.1	1167	
5	LK1111/14/12/5	12.0	113	49.7	1110	
6	LK1111/14/12/6	12.0	113	53.4	-	1)
7	LK1111/14/12/7	12.0	113	50.0	1126	
8	LK1111/14/12/8	12.0	113	49.9	1123	
Aver	age values		•	50.2	1186	
Stand	lard deviation			1.4	91	
Varia	ation coefficient v	%.		2.9	7.7	
Exte	nded inaccuracy of	f a single me	asurement at a	± 1.3	± 15	
confi	dence level of app	orox. 95% (K	= 2)			
1) ex	tracting the sampl	e from sleeve	e		·	1

Table 3

No.	Sample ID	Nominal diameter	Cross-section area	Ultimate modulus of elongation	Ultimate tensile strength	Notes
				8	<u> </u>	
			S ₀	E _{T,i}	$R_{T,i}$	
		mm	mm ²	GPa	MPa	
1	LK1111/14/18/1	18.0	254	52.1	-	
2	LK1111/14/18/2	18.0	254	54.6	-	
3	LK1111/14/18/3	18.0	254	53.7	-	
4	LK1111/14/18/4	18.0	254	50.6	-	
5	LK1111/14/18/5	18.0	254	50.4	-	
6	LK1111/14/18/6	18.0	254	51.1	-	
7	LK1111/14/18/7	18.0	254	50.0	-	
8	LK1111/14/18/8	18.0	254	50.0	-	
9	LK1111/14/18/9	18.0	254	52.8	-	
10	LK1111/14/8/10	18.0	254	52.5	-	
Ave	age values			52.4	-	
Stan	dard deviation			1.4	-	
Vari	ation coefficient v	%.		2.6	-	
	nded inaccuracy o idence level of app	v		± 1.4	-	

For bars 18 mm in diameter it was impossible to determine tensile strength due to insufficient strength of the ends of samples made by manufacturer.

4.2 Ultimate bending strength

Table	4
raute	+

No.	Sample id	Nominal diameter	Cross- section	Maximum force	Ultimate bending strength	Notes
			area		C	
			So	F_m	R _{B,i}	
		mm	mm ²	kN	MPa	
1	LK1111/14/8/31	8.0	50.3	2.205	877	
2	LK1111/14/8/32	8.0	50.3	2.355	937	
3	LK1111/14/8/33	8.0	50.3	2.282	908	
4	LK1111/14/8/34	8.0	50.3	2.375	945	
5	LK1111/14/8/35	8.0	50.3	2.290	911	
6	LK1111/14/8/36	8.0	50.3	2.225	885	
7	LK1111/14/8/37	8.0	50.3	2.072	824	
8	LK1111/14/8/38	8.0	50.3	2.161	860	
9	LK1111/14/8/39	8.0	50.3	1.964	781	
10	LK1111/14/8/40	8.0	50.3	2.268	902	
Avera	ige values			2.220	883	
Stand	ard deviation			0.127	50	
Varia	tion coefficient v %.			5.7	5.7	
	ded inaccuracy of a lence level of approx	0		± 0.028	±11	
	nce between support	,	,	= 8 mm		

No.	Sample id	Nominal	Cross-	Maximum	Ultimate bending	Notes
		diameter	section	force	strength	
			area			
			So	F_m	R _{B,i}	_
		mm	mm ²	kN	MPa	
1	LK1111/14/12/31	12.0	113	3.680	651	
2	LK1111/14/12/32	12.0	113	3.640	644	
3	LK1111/14/12/33	12.0	113	3.750	663	
4	LK1111/14/12/34	12.0	113	4.000	707	
5	LK1111/14/12/35	12.0	113	3.710	656	
6	LK1111/14/12/36	12.0	113	4.060	718	
7	LK1111/14/12/37	12.0	113	3.780	668	
8	LK1111/14/12/38	12.0	113	3.900	690	
9	LK1111/14/12/39	12.0	113	3.770	667	
10	LK1111/14/12/40	12.0	113	3.700	654	
Avera	age values			3.799	672	
Stand	lard deviation			0.141	25	
Varia	tion coefficient v %.			3.7	3.7	
Exter	ded inaccuracy of a	single meas	urement at a	± 0.047	±8	
	dence level of approx	0				
	nce between support			r = 12 mm		
			,			

No.	Sample id	Nominal diameter	Cross- section	Maximum force	Ultimate bending strength	Notes
		urameter	area	loice	suengui	
			So	F_m	R _{B,i}	_
		mm	mm ²	kN	MPa	
1	LK1111/14/18/31	18.0	254	8.050	738	
2	LK1111/14/18/32	18.0	254	9.000	825	
3	LK1111/14/18/33	18.0	254	9.140	838	
4	LK1111/14/18/34	18.0	254	9.110	835	
5	LK1111/14/18/35	18.0	254	8.230	755	
6	LK1111/14/18/36	18.0	254	8.610	789	
7	LK1111/14/18/37	18.0	254	8.260	757	
8	LK1111/14/18/38	18.0	254	8.930	819	
9	LK1111/14/18/39	18.0	254	8.420	772	
10	LK1111/14/18/40	18.0	254	9.430	865	
Avera	age values	•		8.718	799	
Stand	ard deviation			0.466	43	
Varia	tion coefficient v %.			5.3	5.3	
Exten	ded inaccuracy of a	single meas	urement at a	±0.109	± 10	7
confi	dence level of approx	к. 9 ⁻ 5% (К =	= 2)			
	nce between supports			r = 18 mm		7

4.3 Ultimate shear strength

No.	Sample id	Nominal diameter	Cross-section area	Ultimate shear strength	Notes
			S ₀	R _{s,i}	
		mm	mm ²	MPa	
1	LK1111/14/8/21	8.0	50.3	185.5	
2	LK1111/14/8/22	8.0	50.3	223.8	
3	LK1111/14/8/23	8.0	50.3	185.5	
4	LK1111/14/8/24	8.0	50.3	203.9	
5	LK1111/14/8/25	8.0	50.3	184.0	
6	LK1111/14/8/26	8.0	50.3	191.5	
7	LK1111/14/8/27	8.0	50.3	213.4	
8	LK1111/14/8/28	8.0	50.3	198.9	
9	LK1111/14/8/29	8.0	50.3	228.3	
10	LK1111/14/8/30	8.0	50.3	196.5	
Ave	rage values			201.1	
Stan	dard deviation			16.0	
Vari	ation coefficient v %) .		8.0	
Exte	ended inaccuracy of a	a single measure	ement at a	±2.6	
conf	idence level of appro	50x. 95% (K = 2)	1		

Table 8

No.	Sample id	Nominal diameter	Cross-section area	Ultimate shear strength	Notes
			So	$R_{s,i}$	
		mm	mm ²	MPa	
1	LK1111/14/12/21	12.0	113	155.8	
2	LK1111/14/12/22	12.0	113	159.2	
3	LK1111/14/12/23	12.0	113	153.0	
4	LK1111/14/12/24	12.0	113	158.0	
5	LK1111/14/12/25	12.0	113	170.0	
6	LK1111/14/12/26	12.0	113	179.0	
7	LK1111/14/12/27	12.0	113	168.0	
8	LK1111/14/12/28	12.0	113	170.4	
9	LK1111/14/12/29	12.0	113	165.1	
10	LK1111/14/12/30	12.0	113	149.9	
Ave	rage values	·	·	162.8	
Stan	dard deviation			9.2	
Vari	ation coefficient v %			5.6	
Exte	ended inaccuracy of a	single measure	ement at a	±2.1	
	idence level of appro	0			

No.	Sample id	Nominal	Cross-section	Ultimate shear strength	Notes
		diameter	area		
			So	R _{s,i}	
		mm	mm ²	MPa	
1	LK1111/14/18/21	18.0	254	161.1	
2	LK1111/14/18/22	18.0	254	163.1	
3	LK1111/14/18/23	18.0	254	159.2	
4	LK1111/14/18/24	18.0	254	166.2	
5	LK1111/14/18/25	18.0	254	170.3	
6	LK1111/14/18/26	18.0	254	176.2	
7	LK1111/14/18/27	18.0	254	180.6	
8	LK1111/14/18/28	18.0	254	174.7	
9	LK1111/14/18/29	18.0	254	170.9	
10	LK1111/14/18/30	18.0	254	164.7	
Ave	rage values			168.7	
Stan	dard deviation			7.0	
Vari	ation coefficient v %			4.2	
Exte	nded inaccuracy of a	single measure	ement at a	±2.1	
	idence level of appro				

4.4 Ultimate compression strength along the fibers

Table	10
I UUIU	10

No.	Sample id	Nominal Cross-section area diameter		Ultimate compression strength	Notes
			So	R _{C,i}	_
		mm	mm ²	MPa	
1	LK1111/14/8/11	8.0	50.3	469.5	
2	LK1111/14/8/12	8.0	50.3	569.0	
3	LK1111/14/8/13	8.0	50.3	650.5	
4	LK1111/14/8/14	8.0	50.3	451.6	
5	LK1111/14/8/15	8.0	50.3	495.4	
6	LK1111/14/8/16	8.0	50.3	457.6	
7	LK1111/14/8/17	8.0	50.3	531.2	
8	LK1111/14/8/18	8.0	50.3	517.3	
9	LK1111/14/8/19	8.0	50.3	582.9	
10	LK1111/14/8/20	8.0	50.3	769.9	
Ave	rage values			549.5	
Stan	dard deviation			99.5	
Vari	ation coefficient v %	ý.		18.1	
	nded inaccuracy of a lof approx. 95% (K	0	urement at a confidence	±8.9	

No.	Sample id	Nominal diameter	Cross-section area	Ultimate compression strength	Notes
			S ₀	R _{C,i}	_
		mm	mm ²	MPa	
1	LK1111/14/12/11	12.0	113	415.6	
2	LK1111/14/12/12	12.0	113	523.4	
3	LK1111/14/12/13	12.0	113	527.9	
4	LK1111/14/12/14	12.0	113	534.1	
5	LK1111/14/12/15	12.0	113	604.8	
6	LK1111/14/12/16	12.0	113	588.0	
7	LK1111/14/12/17	12.0	113	513.7	
8	LK1111/14/12/18	12.0	113	591.5	
9	LK1111/14/12/19	12.0	113	539.4	
10	LK1111/14/12/20	12.0	113	609.2	
Ave	rage values	•		544.8	
Stan	dard deviation	58.1			
Vari	ation coefficient v %	10.7	7		
	nded inaccuracy of a	± 7.1	1		
	l of approx. 95% (K :				

Tabl	e 12			1 42	30 11 01 23
No.	Sample id	Nominal diameter	Cross-section area	Ultimate compression strength	Notes
			So	R _{C,i}	-
		mm	mm ²	MPa	
1	LK1111/14/18/11	18.0	254	558.4	
2	LK1111/14/18/12	18.0	254	609.1	
3	LK1111/14/18/13	18.0	254	483.4	
4	LK1111/14/18/14	18.0	254	578.5	
5	LK1111/14/18/15	18.0	254	719.9	
6	LK1111/14/18/16	18.0	254	672.0	
7	LK1111/14/18/17	18.0	254	672.0	
8	LK1111/14/18/18	18.0	254	672.8	
9	LK1111/14/18/19	18.0	254	620.9	
10	LK1111/14/18/20	18.0	254	604.0	
Ave	rage values		·	619.1	
Stan	dard deviation	68.9			
Vari	ation coefficient v %	11.1			
Exte	nded inaccuracy of a	± 8.4			
leve	l of approx. 95% (K	= 2)			

4.5 Cross-section area and geometry of ribs

Table 1	3						
Nom.	Sample No.	Section		Ribs din	nensions		Average
diam.		area	Dian	neter	Braid	Braid	relative
		defined	inner	outer	pitch	height	area of
		by mass					rib
ds		Α	di	de	Cs	hs	fp
mm		mm ²	mm	mm	mm	mm	_
8.0	LK1111/14/8/41	51.816	7.84	9.70	6.686	0.825	0.123
			8.08	9.72			
			7.97	9.66			
			7.94	9.12			
			7.90	9.38			
			7.89	9.92			
Averag	e values		7.94	9.59	6.686	0.82	
s			0.08	0.29	-	-	
Extend	ed inaccuracy at a	± 0.060	±0.13	±0.26	±0.012	±0.15	± 0.022
	nce level of approx.						
8.0	LK1111/14/8/42	52.149	7.84	9.32	_6.686	0.797	0.119
			8.08	9.48			
			7.97	9.54			
			7.94	9.62			
			7.90	9.48			
			7.89	9.72			
Averag	e values		7.94	9.53	6.686	0.80	
s			0.08	0.14	-	-	
	ed inaccuracy at a nce level of approx.	± 0.061	±0.13	±0.16	±0.012	±0.10	±0.016
8.0	LK1111/14/8/43	52.046	7.84	9.36	6.686	0.783	0.117
			8.08	9.50			
			7.97	9.48			
			7.94	9.68			
			7.90	9.44			
			7.89	9.54	1		
Average values			7.94	9.50	6.686	0.78]
s			0.08	0.11	-	-	1
Extend	ed inaccuracy at a	± 0.077	±0.13	±0.15	±0.012	±0.10	±0.015
	nce level of approx.						

Table	14							
Nom.	Nom. Sample No. Section			Ribs dimensions				
diam.		area	Diam	neter	Braid	Braid	relative	
		defined	inner	outer	pitch	height	area of	
		by mass			_	_	rib	
ds		Α	di	de	Cs	hs	fp	
mm		mm ²	mm	mm	mm	mm	_	
12.0	LK1111/14/12/41	106.23	11.81	13.48	8.453	0.867	0.103	
			11.86	13.54				
			11.63	13.64				
			11.94	13.44				
			11.44	13.22				
			11.63	13.38				
Avera	ge values		11.72	13.45	8.453	0.87		
S			0.18	0.14	-	-		
Extend	led inaccuracy at a	±0.12	±0.19	±0.16	±0.012	±0.13	±0.015	
confid	ence level of approx.							
95% (]	K = 2)							
12.0	LK1111/14/12/42	106.41	11.95	13.15	8.502	0.755	0.089	
			11.65	13.55				
			11.76	13.25				
			11.99	13.33				
			11.90	13.13				
			11.74	13.65				
Avera	ge values		11.83	13.34	8.502	0.76		
S			0.13	0.21	-	-		
Extend	led inaccuracy at a	±0.12	±0.16	±0.21	±0.012	±0.13	±0.015	
confid	ence level of approx.							
12.0	LK1111/14/12/43	104.39	11.82	13.73	8.507	0.765	0.090	
			11.62	13.21	_			
			11.70	13.13	_			
			11.91	13.43				
			11.70	13.61				
			11.66	12.51				
Average values			11.74	13.27	8.507	0.77		
s			0.11	0.44	-	-		
	led inaccuracy at a	±0.12	±0.15	±0.37	±0.012	±0.20	± 0.024	
confid	ence level of approx.							

Table 1	5			Ribs din			-
Nom.	Sample No.		Average				
diam.		area	Dian	neter	Braid	Braid	relative
		defined	inner	outer	pitch	height	area of
		by mass					rib
ds		A	di	de	Cs	hs	fp
mm		mm ²	mm	mm	mm	mm	_
18.0	LK1111/14/18/41	242.12	17.48	20.27	10.490	1.083	0.103
			17.60	19.75			
			17.66	19.63			
			17.80	19.45			
			17.81	19.13			
			17.34	20.49			
Average	e values		17.62	19.78	10.490	1.08	
s			0.18	0.51	-	-	1
Extende	ed inaccuracy at a	±0.37	±0.19	±0.43	±0.012	±0.24	± 0.022
	nce level of approx.						
18.0	LK1111/14/18/42	241.61	17.14	20.03	10.288	1.070	0.104
			17.89	20.07			
			17.35	19.51			
			17.91	19.93			
			17.47	19.73			
			17.64	18.95			
Average	e values		17.57	19.71	10.288	1.07	
s			0.31	0.42	-	-	1
Extende	ed inaccuracy at a	±0.37	±0.27	±0.36	±0.012	±0.23	± 0.022
	nce level of approx.						
18.0	LK1111/14/18/43	241.14	17.15	18.67	10.798	0.955	0.088
			17.86	20.39	4		
			17.15	18.75	4		
			17.94	19.99	4		
			17.37	19.39	4		
			17.86	19.63			4
Average values			17.56	19.47	10.798	0.96	
S		-	0.37	0.68	-	-	
	ed inaccuracy at a	±0.37	±0.33	±0.57	±0.012	±0.33	± 0.030
confide	nce level of approx.						

4.6 Chemical resistance to alkali

Table	16
1 4010	10

No.	Sample id	Nominal diameter		Loss of initial stability after 336 hours	Extrapolated loss of initial stability after 1000 hours	Notes
		mm	$\frac{S_0}{mm^2}$	C _{a,336} %	C _{a,1000}	
1	LK1111/14/8/11	8.0	50	18.8%	21.9%	
2	LK1111/14/8/12		50	15.4%	18.1%	
3	LK1111/14/8/13	8.0	50	17.9%	20.9%	
4	LK1111/14/8/14	8.0	50	30.5%	-	1)
5	LK1111/14/8/15	8.0	50	16.9%	19.8%	
6	LK1111/14/8/16	8.0	50	40.8%	-	1)
Aver	age values			17.3%	21.0%	
	nded inaccuracy of a s	0		± 1.3%	±2.1%	1
	fidence level of appro					
1) ex	tracting the sample fr	om sleeve	e - the result	is rejected		J

4.7 Creep

	Sample name								
LK1111/1	LK1111/14/12/51 LK1111/14/12/52 LK1111/14/12/54 LK1111/14/12/55								
			Loa						
809	% F _{T,i,av}	76	% F _{T,i,av}	68	% F _{T,i,av}	64	% F _{T,i,av}		
Testing	Deformations	Testing	Deformations	Testing	Deformations	Testing	Deformations		
time	increase	time	increase	time	increase	time	increase		
[h]	[%]	[h]	[%]	[h]	[%]	[h]	[%]		
0.083	0.000	0.083	0.000	0.083	0.000	0.83	0.000		
0.5	0.137	0.5	0.071	0.5	0.035	0.5	0.046		
1	0.172	1.0	0.087	1.0	0.054	1.0	0.058		
Sample fa	ilure occured	4.0	0.119	5.0	0.086	5.0	0.084		
after 2.5 []	h]	24.0	0.206	24.5	0.130	24.5	0.137		
		49.5	0.283	49.0	0.172	49.0	0.161		
		120	0.323	120	0.203	120	0.197		
		192	0.399	192	0.215	192	0.207		
		288	0.626	288	0.239	288	0.226		
		360	0.882	432	0.244	432	0.234		
			failure	696	0.269	696	0.254		
		occured	after 428 [h]						

Table	18
-------	----

Sample name							
LK1111/1	4/12/57 L	K1111/1	K1111/14/12/58 LK1111/14/12/59				
			Load				
569	% F _{T,i,av}	52	2% F _{T,i,av}	48	3% F _{T,i,av}		
Testing	Deformations	Testing	Deformations	Testing	Deformations		
time	increase	time	increase	time	increase		
[h]	[%]	[h]	[%]	[h]	[%]		
0.83	0.000	0.83	0.000	0.83	0.000		
0.5	0.008	0.5	0.021	0.5	0.019		
1.0	0.018	1.0	0.026	1.0	0.028		
4.0	0.036	4.0	0.049	4.0	0.044		
24.0	0.065	24.0	0.082	24.0	0.061		
50.	0.080	50.	0.099	50.	0.089		
120	0.099	120	0.122	120	0.090		
192	0.110	192	0.135	192	0.109		
288	0.126	288	0.152	288	0.140		
432	0.126	432	0.154	432	0.145		
696	0.144	696	0.176	696	0.144		

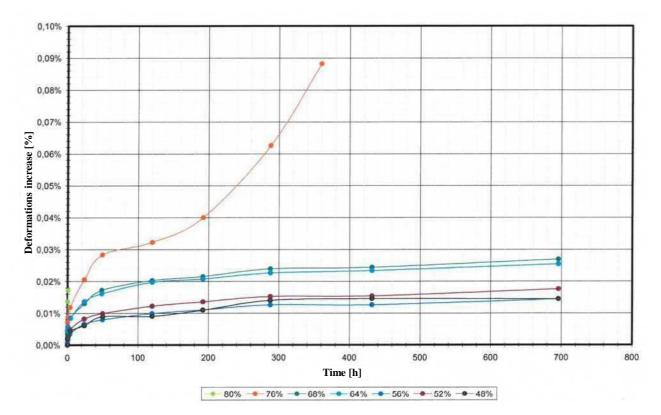


Fig. 1 - Deformations increase over time for tested samples

4.8 Adhesion to concrete

Testing was conducted for design strength of concrete equal to 25 MPa (concrete class C25/30). Ratio of actual average compressive strength of concrete to design value is 0.72.

Table 19						
Nominal	Force at	Force at	Force at	Maximum	Average stress	Stress of
diameter of	sliding	sliding	sliding 1	force	during sliding	adhesion loss
bar	0.01 mm	0.1 mm	mm			
mm	kN	kN	kN	kN	MPa	MPa
8	1.19	6.45	10.10	11.20	8.19	15.5
8	0.96	6.21	8.36	9.82	7.17	13.6
8	0.86	4.51	10.34	11.41	7.25	15.8
8	1.21	7.15	8.49	9.78	7.78	13.5
8	1.55	5.88	9.65	11.22	7.88	15.5
8	1.70	7.31	10.24	14.00	8.89	19.4
12	2.60	11.00	19.50	25.50	6.79	15.7
12	3.38	8.90	22.05	25.00	7.04	15.4
12	4.75	9.85	23.40	25.15	7.80	15.5
12	4.50	11.25	23.00	25.30	7.95	15.6
12	3.65	14.20	22.10	24.90	8.20	15.3
12	2.85	9.45	23.05	25.10	7.25	15.4

5. EVALUATION OF TEST RESULTS

5.1 Requirements

Table	20
raute	20

No	Properties	Requirements	Testing Methods	
1	2	3	4	
1.	Tolerance of area defined by weight from nominal value ¹⁾	±8%	according to 3.5	
2.	Inner diameter d _i [mm]	$\begin{array}{c} d_s \mbox{-}1 \leq d_i \leq d_s \\ (d_s \mbox{-} nominal diameter of bar in mm) \end{array}$		
3.	Outer diameter d _e [mm]	$\label{eq:ds} \begin{array}{l} d_s \leq d_e \leq d_s + 1 \\ (d_s \text{ - nominal diameter of bar in mm}) \end{array}$		
4.	Braid pitch c _s [mm]	$\begin{array}{c} 0.4 \ d_s + 3 \leq c_s \leq 0.4 \ d_s + 4 \\ (d_s \text{ - nominal diameter of bar in mm}) \end{array}$		
5.	Minimum reinforcement ratio f _p ²⁾ [-]	0.070		
6.	Ultimate tensile strength $R_{T,i}$ [MPa]	≥ 1100	according to 3.1	
7.	Ultimate modulus of elongation $E_{T,i}$ [GPa]	50-55		
	Ultimate compression strength along fibers R _{c,i} [MPa]	≥ 350	according to 3.4	
9.	Ultimate shear strength R _{s,i} [MPa]	≥ 150	according to 3.3	
10.	Reduction of load limit due to exposure to alkaline medium $C_{a,1000}$ [%]	≤25%	according to 3.6	
	Reduction of load limit caused by creep after 1000 hours, $C_{c,1000}$ [%]	≤25%	according to 3.7	
12.	Adhesion to concrete C25/30 Average value of stress T_m , [MPa] Stress of adhesion loss T_r [MPa]	0.098(80-1.2 d _s) 0.098 (130-1.9 d _s) (d _s - nominal diameter of bar in mm)	according to 3.8	

Properties listed in paragraphs 1-5-9 of Table 20 should be included in the scope of current testing of products, and properties listed in paragraphs 10 and 11 - in the scope of periodic testing.

As an evaluation criterion to ensure long-term quality level 5% quantile for ultimate tensile strength $R_{T,i}$ and 10% for other properties that are within the scope of the current testing should be taken.

5.2 Evaluation of results

The method of evaluation of testing results given in Annex C to PN-EN 1992-1-1 is applied. 0.97 and 1.03 of the normative value of considered property are taken as absolute minimum and maximum respectively. The required value for average tensile strength is set to 1,120 MPa, i.e. standard value is increased by 20 MPa.

5.2.1 Tensile strength and elasticity modulus

Table 21 summarizes test results and required values.

Table 21					
Nominal	Modulus of elongation			Tensile stre	ngth
diameter	_				
			1		
	minimum	average	maximum	minimum	average
ds	${ m E}_{{ m T},{ m i},{ m min}}$	$E_{T,i,av}$	$E_{T,i,max}$	$R_{T,i,min}$	$\mathbf{R}_{\mathrm{T,i,av}}$
mm	GPa	GPa	GPa	MPa	MPa
8	50.7	52.4	54.8	1339	1468
12	48.9	50.2	53.4	1110	1186
18	50.0	51.8	54.6	-	-
	Required values				
-	\geq 48.5	50-55	\leq 56.7	≥ 1067	≥1120

The obtained test results satisfy the requirements listed in Table 20.

5.2.2 Shear strength

Table 22 summarizes test results and required values.

Table 22				
Nominal	Shear strength			
diameter	minimum	average		
ds	R _{s,i,min}	R _{s,i,av}		
mm	MPa	MPa		
8	184	201		
12	150	163		
18	159	169		
Required values				
-	≥145	≥150		

Tested samples satisfy requirements listed in table 20.

5.2.3 Compression strength along the fibers

Table 23 summarizes test results and required values.

1 able 23			
Nominal	Compression strength		
diameter	minimum average		
ds	R _{C,i,min}	R _{C,i,av}	
mm	MPa	MPa	
8	184	201	
12	150	163	
18	159	169	
Required values			
-	≥145	≥150	

Table 23

Tested samples satisfy requirements listed in table 20.

5.2.4 Cross-section area and geometry of ribs

Table 24 summarizes values obtained during testing, together with requirements.

Nominal diameter	Cross-section area			Coefficients of reinforcement	
	minimum	average	maximum	minimum	average
ds	A _{min}	A _{av}	A _{max}	f _{p,min}	f _{p,av}
mm	mm^2	mm ²	mm^2	-	-
8	Test resuts				
	51.8	52.0	52.1	0.117	0.120
	Required values				
	≥ 44.9	46.2-54.3	≤ 55.9	≥ 0.068	≥ 0.070
12	Test resuts				
	104.4	105.7	106.4	0.089	0.094
	Required values				
	≥100.9	104.0-122.1	≤ 125.8	≥ 0.068	≥ 0.070
18	Test resuts				
	241.1	241.6	242.1	0.088	0.099
	Required values				
	≥227.1	234.1-274.8	≤ 283.1	≥ 0.068	≥ 0.070

Table 24

The obtained test results satisfy the requirements listed in table 20.

5.2.5 Chemical resistance to alkali

Table 25 summarizes test results and required values.

Table 25

Nominal	Extrapolated loss of stability after 1000 hours		
diameter			
	minimum	average	
ds	C _{a,1000,min}	C _{a,1000,max}	
mm	%	%	
8	19.7%	21.0%	
Required values			
-	$\leq 25.8\%$	\leq 25.0%	

Tested samples satisfy requirements listed in table 20.

5.2.6 Creep

Among 7 samples tested, the one loaded with an initial force equal to 80% of ultimate tensile strength was destroyed in the initial testing phase. Among the remaining 6 samples, the one loaded with an initial force equal to 76% of ultimate tensile strength was destroyed after

428 hours from the start of the testing. This corresponds to the value of parameter $C_{c,1000}$, which amounts to 26.9%. As a result of applying too low load levels for further 5 samples, they were not destroyed after 696 hours. However the character of "deformation-time" curves obtained up to this point allows to conclude, that they can reach the average value of parameter $C_{c,1000}$ under 25%. For this reason, it can be concluded that the tested bars have the required properties listed in 5.1.

5.2.7 Adhesion to concrete

For bars with a diameter of 8 mm the required average stress during sliding 0.01 mm; 0.1 mm and 1 mm is 6.90 MPa according to 5.1, and the stress of adhesion loss is 11.25 MPa. All tested bars with a diameter of 8 mm satisfy these requirements.

For bars with a diameter of 12 mm the required average stress during sliding 0.01 mm; 0.1 mm and 1 mm is 6.43 MPa according to 5.1, and the stress of adhesion loss is 10.51 MPa. All tested bars with a diameter of 12 mm satisfy these requirements.

6. SCOPE AND CONDITIONS OF APPLICATION OF ARMASTEK COMPOSITE BARS

6.1 Designation and scope of application of the product

ARMASTEK composite bars with diameters of 4 ± 8 mm are designed to be used in elements of tension and compression reinforcement of structures made of reinforced concrete. These bars should not be used for reinforcement of structures that are subjected to dynamic loads and multiple changes. It is prohibited to bend ARMASTEK bars at the construction site, as well as to connect them in any way, but to overlap, according to rules contained in PN-EN 1992-1-1.

6.2 Conditions of application of the product

In calculations of reinforced concrete structures according to PN-EN 1992-1-1 the initial data for materials for reinforcement should be taken as in Clause 3.2.7 of the standard, amended taking into account the absence of A and B branches in Fig. 3.8. Partial safety coefficient γ_s should be taken equal to 1.25.

Instead of the specified limit of plasticity f_{yk} , value of f_{tk} defined for tension reinforcement should be taken according to the following formula:

$$f_{tk} = R_{T,i}/n_{env} \tag{5}$$

while for compression the relation is as follows:

$$f_{tk} = R_{C,i}/n_{env} \tag{6}$$

where

$$n_{env} = 1/0.75^{n+2} \tag{7}$$

The value of parameter *n* in formula (7) is as follows:

 $n = n_{mo} + n_T + n_{SL}$

where

 $n_{mo} = -1$ for exposure class XC1 $n_{mo} = 0$ for exposure class XC3, XD1, XD3, XS1, XS3 $n_{mo} = 1$ for exposure class XC2, XC4, XD2, XS2, XA1, XA2, XA3

 $n_T = 0.5$ for use at temperatures not exceeding 15 °C – average annual value – typical outdoor temperature conditions in Poland

 $n_T = 0$ for use at temperatures not exceeding 25 °C – average annual value

 $n_T = 0.5$ for use at temperatures not exceeding 35 °C – average annual value

 $n_{SL} = 1$ for operation period of 1 year $n_{SL} = 2$ for operation period of 10 years $n_{SL} = 2$ for operation period of 50 years $n_{SL} - 3$ for the operation period of 100 years

In calculations taking into account the effect of short-term loads, the value of module $E_s = E_{T,i}$ should be taken. In calculations taking into account the effect of long-term loads an additional increment of deformations (expressed in abstract values) should be considered, equal to:

$$\Delta \varepsilon = 10^{a \cdot \log(t) + b} \tag{9}$$

Values of parameters *a* and *b* in formula (9) are as follows:

$$a = -0.14 \cdot \sigma_s / R_{T,i} + 0.39 \tag{10}$$

and

$$b = 2.14 \cdot \sigma_s / R_{T,i} - 5.72 \tag{11}$$

where

t - time of prolonged exposure in hours σ_S - tensile stresses caused by long-term part of design loads.

In case where stresses σ_S have compressing character $R_{C,i}$ should be used in formulas (10) and (11) instead of $R_{T,i}$.

(8)

7. FINAL PROVISIONS

Composite bars tested in this project satisfied the conditions listed in 5.1. Thus, it can be concluded that ARMASTEK composite bars with diameters of 4 ± 18 mm can be used for concrete reinforcement on conditions and to extent specified in paragraph 6 and its subparagraphs.

This project does not include fire safety issues.

Person responsible for testing: **dr eng. Przemysław Więch** Title, name /*Signature*/ Signature

Report approved by: dr eng. Artur Piekarczuk Title, name /Signature/ Signature

Warsaw, May 11, 2015

Testing Laboratory hereby declares that the test results relate only to the tested object. It is prohibited to replicate the report in any other way other than in full without the written consent of the Testing Laboratory. The test report does not replace documents required for release procedure and obtaining permits for building products.

